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Abstract

Atomistic features of small interstitial clusters in Fe and Ni have been investigated by computer simulation. The

gradual change from an interstitial cluster to a dislocation loop was observed in detail from three points of view, (i)

strain distribution along crowdion axis for each crowdion in a cluster, (ii) distribution of Burgers vector of peripheral

dislocation line of a cluster, and (iii) recombination behavior of a vacancy of with a cluster. It is found that strain

distribution was spread into two opposite directions on a crowdion axis with the increase of a cluster size. The ir-

regularity on the curve of the distribution of Burgers vector of a smaller loop gradually disappears with the increase of a

loop size. Recombination between a crowdion and a vacancy occurs on the peripheral position of smaller clusters, but

this does not occur in larger clusters. These aspects show that the gradual change from an interstitial cluster to a

dislocation loop occurs at a certain width of cluster size. Dynamic behavior was also investigated under cylindrical

shear stress and the Peierls stress was obtained as a function of loop size. The results show that the Peierls stress de-

creases with increasing loop size down to the value of a straight edge dislocation. Activation energies of one atomic

jump of these small dislocation loops were also calculated and small values of about 0.2 eV were found for loops of

about 200 crowdions for both Fe and Ni. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In materials under irradiation environments the de-

fect cluster formation process plays an important role

for the damage structure generation because it is closely

related to the production of the imbalance between va-

cancy and interstitial ¯uxes during irradiation, namely,

the so-called bias factor. Many theoretical attempts have

been performed to understand the bias phenomena, such

as dislocation bias [1±5], production bias [6,7] and so on.

However, fundamental properties of the defect clusters

have not been clearly understood yet, especially the

atomic structure of the small clusters and their interac-

tion behavior with other crystalline defects, such as

dislocations. A better understanding of the whole dam-

age generation process, void swelling, radiation embrit-

tlement and so on necessitates more investigations. In

the present study attempts will be made to clarify the

atomistic features of small interstitial clusters and their

behavior under applied shear stress in model Fe and Ni

lattices, which are typical bcc and fcc metals and are

important elements in ferritic and austenitic stainless

steels, respectively. Especially the di�erence between

small interstitial clusters and dislocation loops will be

investigated in detail.

Clusters of crowdions will be mainly investigated in

detail because these clusters have possibility of dynamic

response, that is, gliding along the direction of crow-

dion axis. It is accepted that the increase of a cluster

size causes gradual change from a small interstitial

cluster to a dislocation loop. To understand this grad-

ual change three attempts will be made to clarify the

elemental process, that is, (i) to observe the change of

the strain distribution along crowdion axis for each

crowdion in a cluster. (ii) to observe the distribution of

Burgers vector of peripheral dislocation line of a clus-

ter, and (iii) to observe the recombination behavior with

a vacancy of each crowdion on a peripheral position of

a cluster.
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2. Method of calculation

Computer simulation of the behavior of small inter-

stitial clusters with N-body potentials like EAM type

potential was made. The potentials given by Finnis and

Sinclair [8,9] and by Gao et al. [10] were used for Fe and

Ni, respectively. Interstitial clusters were introduced into

the central region of the model lattices shown in Fig.

1(a) and (b) for Fe and Ni, respectively. Sizes of the

model lattices are 60b ´ 60(2/3)1=2b ´ 60(2 � 21=2/3)b and

60b ´ 60(2/3)1=2b ´ 60(31=2/2)b (b: magnitude of Burgers

vector) for Fe and Ni, respectively as shown in Fig. 1,

where the orientation of the model lattices are also

shown. Whole lattice with a defect cluster was fully

relaxed by the static method (Newton±Raphson

method) under the ®xed boundary condition. This

static method has no temperature e�ect, then all the

results obtained correspond to T � 0 K. The size of

the model lattice was chosen as large as possible to

avoid the boundary e�ect. Small interstitial clusters are

constructed by making bundles of crowdions on low

index atomic planes, h1 11i crowdions on {1 1 0} or

{1 1 1} atomic planes (loop planes) in Fe and h110i
crowdions on {1 1 1} or {1 1 0} atomic planes (loop

planes) in Ni.

3. Results and discussion

3.1. Cluster size e�ect on the strain distribution on a

crowdion axis in interstitial clusters

The strain ®eld around a single crowdion is one di-

mensionally spreading towards two opposite directions

along its axis. The direction of crowdion axis is along

h111i and h110i atomic rows for Fe and Ni, respectively.

It must be investigated how this situation might be

changed when crowdions form a cluster. In Fig. 2 the

atomic structure of a typical interstitial cluster, a bundle

of 19 crowdions I19 in Fe is shown from two di�erent di-

rections to the loop, top view (a) and front view (b). In Fig.

2(b) the structure of bundled crowdions are clearly seen.

In Fig. 3 the strain distribution along a h111i
crowdian axis in interstitial clusters, (a/2) h111i dislo-

cation loops is shown for Fe as a function of cluster size

compared with that of a straight edge dislocation. The

abscissa Z is the atomic position on a h111i crowdion

axis in unit of b (magnitude of Burgers vector, inter-

atomic distance along h111i direction in a perfect lat-

tice) and the ordinate Zk�1ÿZk ÿ 1 (b unit) is the

interatomic distance between two adjacent atoms on a

crowdion axis ± b. All negative values in the ®gure show

Fig. 1. Model lattice for (a) Fe and (b) Ni for the construction

of interstitial clusters.

Fig. 2. Atomic con®guration of an intersititial cluster I19, (a/2)

h111i dislocation loop in Fe, (a) top view and (b) front view.
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Fig. 3. Distribution of the interatomic distance between two adjacent atoms on a h111i crowdion axis in interstitial clusters in Fe: the

abscissa Z is the atomic positon on a h111i crowdion axis in unit of b (magnitude of Burgers vector) and the ordinate Zk�1ÿZkÿ1 (b

unit) is the interatomic distance between two adjacent atoms on the crowdion axis ± b. Results are shown for Iÿ I4 (a), for I7ÿ I19 (b),

for I91 (atomic rows at central to peripheral positions) (c), and for a straight edge dislocation (d). The atomic row on which the in-

teratomic distance was measured is shown by a small arrow in the symbolic mark of interstitial clusters drawn beside.
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that the interatomic distances are shorter than b. In the

®gure the atomic row on which the interatomic distance

was measured is shown by a small arrow in the symbolic

mark of interstitial clusters drawn beside. The case of

I1ÿ I4 is shown in Fig. 3(a), that of I7ÿ I19 in Fig. 3(b),

that of I19 (atomic rows located at central to peripheral

positions) in Fig. 3(c), and that of a straight edge dis-

location in Fig. 3(d).

It is realized that the localized strain of an isolated

crowdion becomes split gradually into two parts in op-

posite sides with increasing cluster size. This splitting

tendency is more prominent at the central part of a

cluster, but at a peripheral position of a large loop this

splitting does not occur as shown in Fig. 3(c). The

splitting of strain observed here shows that the structure

change to a perfect lattice takes place especially from the

central part of a cluster.

This tendency is also observed for the case of a

straight edge dislocation shown in Fig. 3(d), where the

same splitting occurs on the h111i atomic rows parallel

to the Burgers vector with increasing distance from the

slip plane. On the slip plane this splitting does not occur

just like the case of peripheral position in Fig. 3(c),

which corresponds to the fact that a dislocation in Fe is

not extended, but is a perfect dislocation. The similarity

between clusters and an edge dislocation suggests that

the interstitial clusters tend to a dislocation loop with

increasing cluster size.

Results of the same kind of calculation made for an

interstitial cluster I91, (a/2) h110i dislocation loop and

an edge dislocation in Ni are shown in Fig. 4. In Ni the

extended character of a straight edge dislocation is much

more pronounced because of the low stacking fault en-

ergy. Corresponding to this fact, the extension occurs

even in the dislocation loop, namely, among six seg-

ments of a hexagonal-shaped loop four segments on

{1 1 1} atomic planes are extended, but the other two

segments on {1 0 0} atomic planes are not extended.

Distributions of the interatomic distance on a h110i
crowdion axis shown in Fig. 4(a) are corresponding to

Fig. 4. Distribution of the interatomic distance between two adjacent atoms on each h110i crowdion axis in an interstitial cluster I91 in

Ni: the abscissa Z is the atomic positon on a h110i crowdion axis in unit of b (magnitude of Burgers vector) and the ordinate

Zk�1ÿZk ÿ 1 (b unit) is the interatomic distance between two adjacent atoms on the crowdion axis ± b. Result for I91 is shown in (a),

that for a straight extended edge dislocation in (b). Numbers in the ®gure correspnds to the h110i atomic rows on which the inter-

atomic distancetance was measured.
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the h110i atomic rows 1±6 from the central position to

the peripheral position denoted in the ®gure. The atomic

row 6 is located in the extended part of the dislocation

loop, then the distribution is already split as shown in

the ®gure. The atomic row 1 (central position) shows

rather spread strain distribution than the atomic row 6

(peripheral position). As shown in Fig. 4(b) in the case

of a straight extended edge dislocation in Ni the same

splitting occurs on the h110i atomic rows parallel to the

Burgers vector, and the strain is spreading with in-

creasing distance from the slip plane. Similarity between

an interstitial cluster and an edge dislocation is again

observed in the case of Ni as well as Fe. Namely, this

similarity is clearly seen in I91 both in Fe and Ni, but the

tendency of strain splitting already started to appear in

smaller clusters like I19.

3.2. Burgers vector of dislocation loops

In Fig. 5 the distribution of Burgers vector of the

dislocation line of a loop, i.e., the peripheral line of a

cluster is plotted for the case of I61, an interstitial cluster

of 61 crowdions and also for a straight edge dislocation

for Fe. Here the distribution of Burgers vector qb�x� (b

unit) in the ordinate is de®ned by the di�erential dis-

placement du(x)/dx (u(x) is the displacement shown

above in the ®gure in unit of b) between two adjacent

{1 1 0} atomic planes just above and below the slip plane

of a dislocation segment of a hexagonal-shaped loop.

The value of u(x) changes from zero to one (b unit) on

the x axis (vertical to the dislocation line, in unit of b) in

the range ÿ1��1 along the slip plane. The slip plane

is a surface of a hexagonal-shaped tube which is in

Fig. 5. Distribution of Burgers vector of an interstitial cluster of 61 crowdions, I61 ((a/2) h111i dislocation loop), compared with that

of a straight edge dislocation in Fe: qb(x)(b unit) in the ordinate is de®ned by the di�erential displacement du(x)/dx (u(x) is the dis-

placement shown above in the ®gure in unit of b) between two adjacent {1 1 0} atomic planes just above and below the slip plane of a

dislocation segment of a hexagonal-shaped loop.

E. Kuramoto / Journal of Nuclear Materials 276 (2000) 143±153 147



contact with a hexagonal-shaped loop and consists of six

{1 1 0} planes.

It is seen from Fig. 5 that the irregularity exists on the

distribution curves of Burgers vector qb�x� for an in-

terstitial clusters of 61 crowdions, I61 ((a/2) h111i dis-

location loop), but gradually disappears with the

increase of a loop size (the irregularity is less in I217) and

a dislocation loop approaches to a perfect edge dislo-

cation line. This irregularity is considered to be caused

by a loose core structure of a dislocation loop compared

with a straight edge dislocation. In other word, each

crowdion in a cluster still possesses its own character,

resulting in the irregularity of the Burgers vector curve.

3.3. Recombination with a vacancy

Another way to clarify the basic mechanism of the

gradual transition from a small interstitial cluster, i.e., a

bundle of crowdions to a dislocation loop is to investi-

gate the interaction behavior with a trial vacancy put on

the core region, because this must be tightly related to

the looseness of the core of a dislocation loop.

Fig. 6. Change of vacancy formation energy as a function of a distance from the core of a dislocation loop I61 in Fe (direction of h111i
crowdion axis, parallel to Brugers vector on the {1 1 0} slip plane) and actual atomic con®gurations on {1 1 0} atomic plane on which a

vacancy exists.
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In Figs. 6 and 7 calculated vacancy formation ener-

gies are plotted as a function of the distance from the

dislocation core, namely, along h111i crowdion axis, the

direction of Burgers vector. In case (b) in the ®gure a

vacancy was placed on the line through the dislocation

core, namely, the peripheral position of the loop as

shown schematically in the ®gure, but in case (a) a va-

cancy was placed on the line penetrating the center of a

loop. Vacancy formation energy was obtained by the

conventional method, that is, (total energy of a crystal

with a vacancy + I-cluster)ÿ(total energy of a crystal

without a vacancy + I-cluster + Ec (cohesive energy per

atom)).

As a vacancy approaches to the core of a dislocation

loop the formation energy starts to decrease at a few

atomic distances from the core of a dislocation loop,

that is, from 1.83 eV at the distant region to almost zero

at the core region for the case of I61 in Fe as shown in

Fig. 6 (curve (b)). Corresponding atomic con®gurations

on horizontal {1 1 0} atomic plane are also shown below

Fig. 7. Change of vacancy formation energy as a function of a distance from the core of a straight edge dislocation in Fe (direction of

h111i crowdion axis, parallel to Brugers vector on the {1 1 0} slip plane) and actual atomic con®gurations on {1 1 0} atomic plane on

which a vacancy exists.
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in Fig. 6. It is seen that a vacancy is collapsed at the core

region (marked dark), that is, recombination occurs

completely at the core region as shown in the right two

®gures (V(ÿ3) and V(0), number is a position of a va-

cancy in unit of b), but in the left two ®gures (V(ÿ5) and

V(ÿ4)) vacancies are left uncollapsed without complete

recombination, and with high formation energies. In

other words, in the former a dislocation loop I61 re-

combines with a vacancy and is changed into I60 , which

has a jog on the dislocation line, but in the latter they are

left as a dislocation loop I61 and a vacancy. As seen from

the curve (a) in the ®gure nothing occurs along the

central line (h111i direction) of a loop I61 when a va-

cancy is placed, suggesting that this part of a loop al-

ready has a property of a perfect crystal.

The same procedure was performed also for the in-

teraction between a vacancy and a straight edge dislo-

cation in Fe as shown in Fig. 7. In this case the vacancy

formation energy decreases from 1.83 eV (at a distant

region) to 0.9 eV (at a dislocation core), but not to zero

observed in the case of the dislocation loop shown in

Fig. 6. From the atomic con®gurations on {1 1 0} atomic

plane drawn below in Fig. 7 it is clearly known that

recombination is not completed, that is, a vacancy still

has a free volume even at the dislocation core region

shown in V(0) as well as V(ÿ2) and V(ÿ5). This situa-

tion must be considered to be a vacancy trapped at the

dislocation core, not a jog. This means that in the case of

a straight edge dislocation the character of a crowdion

completely disappears, con®rmed by the incomplete re-

combination behavior with a vacancy. In other word,

the core structure of a straight edge dislocation is very

tight, and the property of each crowdion is not main-

tained.

3.4. Dynamical behavior of dislocation loops under applied

shear stress

The response to the applied shear stress, namely,

dynamic behavior of the dislocation loops was also in-

vestigated by applying the axially symmetrical shear

stress on a dislocation loop as shown in Fig. 8, where a

model Fe lattice of a size of 80 b ´ 80 (2/3)2=3 b ´ 40 (2 �
E21=2/3) b with a dislocation loop at the center is shown.

Since a straight dislocation makes a glide motion under

the shear stress applied on the slip plane, each segment

of a hexagonal-shaped dislocation loop can also make a

glide motion under the shear stress applied on each slip

plane, namely, applied equally on the six {1 1 0} slip

planes of a hexagonal tube which is in contact with a

loop. This is the reason why the axially symmetrical

shear stress was chosen in Fig. 8.

The motion of the dislocation loop under the axially

symmetrical shear stress was oberved by relaxing the

whole lattice fully by the static method (Newton±

Raphson method) under the ®xed boundary condition.

This static method has no temperature e�ect, then all the

results obtained correspond to T � 0 K. This process

was repeated with increasing the applied shear stress

stepwise. The position of the dislocation loop was de-

termined by measuring the Burgers vector dislocation

mentioned above after each step of stressing. The central

position of the Burgers vector distribution thus obtained

gives the present position of the dislocation loop. Be-

yond a certain value of this applied shear stress the

dislocation loop started to move, and the corresponding

distance over which the dislocation loop moved around

b/4.

The stress necessary to move a dislocation loop is

considered to be Peierls stress for the loop. It was made

clear that this Peierls stress (the stress to move a loop to

b/4) has a decreasing tendency as increasing of a loop

size (I19, I61, {1 1 1} loop plane for Fe, and I61, I127, I217,

{1 1 0} loop plane for Ni) and approaches to the level of

that of a straight edge dislocation as shown in Figs. 9

and 10 for Fe and Ni, respectively. Absolute values of

Peierls stress is larger for Fe than Ni, which corresponds

to the result of yield stress measurement.

To understand this decreasing tendency the core

structure of a dislocation loop was drawn as shown in

Figs. 11 and 12 as a function of loop size with that of a

straight edge dislocation for Fe and Ni, respectively.

Arrows in the ®gure denote the di�erential displace-

ments between two atomic planes just above and below

the slip plane. In the core region arrows have large

magnitude due to large strain around a core region, and

in the distant region they show vanishing tendency, be-

cause the crystal comes back to a perfect lattice. From

these ®gures it is recognized that the extension of the

core decreases with decreasing loop size. It is known that

the localized core usually gives higher Peierls stress,

Fig. 8. Application of the axially symmetrical shear stress on a

dislocation loop (a/2) h111i dislocation loop in a model Fe

lattice.
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which is able to explain the decreasing tendency of

Peierls stress obtained in the present simulation.

3.5. Activation energy for a motion of dislocation loop

The activation energy required for overcoming the

Peierls barrier for the motion of a dislocation loop was

calculated by integrating the force±distance curve,

namely, sbl±d curve obtained from the result of stepwise

stressing a dislocation loop. Here s is the shear stress

applied on the dislocation loop, sb is the force acting on

the unit length of a loop, l is a total length of circum-

ference of a loop, d is a distance moved. The schematic

drawing is shown in Fig. 13, where twice of the shad-

owed area corresponds to the peak height of the po-

tential. In Figs. 14 and 15 the obtained activation

energies for Fe and Ni are shown as a function of loop

size, respectively, where increasing tendency is seen with

increasing loop size. On the other hand, the limit of the

smallest loop must be a crowdion itself. The migration

energy of the self-interstitial atom is reported as 0.3 eV

for Fe and 0.15 eV for Ni (these values are corre-

sponding to stage I in the recovery of the electrical re-

sistivity after low temperature irradiation [11]. It is

usually recognized that the stage I corresponds to the

migration of dumbbell type interstitial atom, then the

migration energy of a crowdion might be less than this

value. Recent calculation by Soneda and Diaz de la

Rubia [12] found that the migration energy of a single

SIA in Fe is of 0.16 eV. Hence the curve in this ®gure

might increase in the smallest loop size limit as shown by

a dotted line. The value of action energy is about 0.2 eV

at a loop of about 200 interstitial atoms, which is very

small and might be thermally activated easily at high

temperatures. This is consistent with the reported ob-

servation of motion of small interstitial clusters in the

electron microscope [13]. The activation energy increases

with increasing loop size because force includes the

length of circumference of a loop. It is considered that

for a large enough loop a kink pair formation might

Fig. 10. Relation between the Peierls stress (the stress to move a

loop to b/4, in unit of shear modulus ) for a/2 h110i dislocation

loop and loop size, i.e., number of h110i crowdions in a dis-

location loop for Ni.

Fig. 11. Core structure of dislocation loops and a straight edge

dislocation in Fe: Arrows in the ®gure denote the di�erential

displacements between two atomic planes just above and below

the slip plane, showing larger magnitude in the core region and

vanishing tendency in the distant region (coming back to a

perfect lattice).

Fig. 9. Relation between the Peierls stress (the stress to move a

loop to b/4, in unit of shear modlus l) for a/2 h111i dislocation

loop and loop size, i.e., number of h111i crowdions in a dis-

location loop for Fe.
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occur just like a straight dislocation, then the increasing

tendency will cease automatically.

4. Conclusion

To understand the gradual change from an intersti-

tial cluster to a dislocation loop three attempts have

been made. Clusters of self-interstitial atoms (crowd-

ions) in Fe and Ni were formed in the model lattice and

it was found that as the number of crowdions in a cluster

increases, splitting of the localized strain occurs along

the crowdion axis especially in the central part of a loop.

This e�ect suggests that clusters have tendency to con-

vert to dislocation loops. Distribution of Burgers vector

was also investigated and irregularity is observed in a

smaller loop, but with the increase of loop size this ir-

regularity disappears. Recombination behavior with a

vacancy was studied and it was found that in smaller

loops recombination between a crowdion from the pe-

ripheral position of a loop and a vacancy occurs, but in

larger loops this does not, similar to the case of straight

edge dislocation. These aspects show that, if its size is

Fig. 12. Core structure of dislocation loops and a straight edge

dislocation in Ni: Arrows in the ®gure denote the di�erential

displacements between two atomic planes just above and below

the slip plane, showing larger magnitude in the core region and

vanishing tendency in the distant region (coming back to a

perfect lattice).

Fig. 13. Schematic drawing of force±distance curve (sbl±d

curve) for a motion of a dislocation loop: t is the shear stress

applied on the dislocation loop, sb is the force acting on the

unit length of a loop, l is a total length of circumference of a

loop, d is a distance moved.

Fig. 14. Calculated activation energy for a motion of a dislo-

cation loop as a function of loop size (number of interstitial

atoms in a loop) in Fe.
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bigger than about 200 (number of crowdions in a clus-

ter) for both Fe and Ni, an interstitial cluster behaves

like a dislocation loop. But this gradually changing

tendency to a dislocation loop already occurred even at

smaller clusters. Dynamic behavior of a dislocation loop

was investigated under the axially symmetrical shear

stress. It was found that Peierls stress for a dislocation

loop decreases as the loop size increases due to the ex-

tension of core region of a dislocation loop. Activation

energies of one atomic jump of these small dislocation

loops were also calculated and small values of about

0.2 eV was found for loops of about 200 crowdions for

both Fe and Ni.
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